Share | 11/17/2019
Abstract: Unmanned Aerial Vehicles (UAVs) have become increasingly popular in recent years for agricultural research. High spatial and temporal resolution images obtained with UAVs are ideal for many applications in agriculture. The objective of this study was to evaluate the performance of vegetation indices (VIs) derived from UAV images for quantification of plant nitrogen (N) concentration of spring wheat, a major cereal crop worldwide. This study was conducted at three locations in Idaho, United States. A quadcopter UAV equipped with a red edge multispectral sensor was used to collect images during the 2016 growing season. Flight missions were successfully carried out at Feekes 5 and Feekes 10 growth stages of spring wheat. Plant samples were collected on the same days as UAV image data acquisition and were transferred to lab for N concentration analysis. Different VIs including Normalized Difference Vegetative Index (NDVI), Red Edge Normalized Difference Vegetation Index (NDVIred edge), Enhanced Vegetation Index 2 (EVI2), Red Edge Simple Ratio (SRred edge), Green Chlorophyll Index (CIgreen), Red Edge Chlorophyll Index (CIred edge), Medium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) and Red Edge Triangular Vegetation Index (core only) (RTVIcore) were calculated for each flight event. At Feekes 5 growth stage, red edge and green based VIs showed higher correlation with plant N concentration compare to the red based VIs. At Feekes 10 growth stage, all calculated VIs showed high correlation with plant N concentration.
read the paper
Authors: Walsh, Olga S., Sanaz Shafian, Juliet M. Marshall, Chad Jackson, Jordan R. McClintick-Chess, Steven M. Blanscet, Kristin Swoboda, Craig Thompson, Kelli M. Belmont, and Willow L. Walsh
Associations: Department of Plant Sciences, Southwest Research and Extension Center, University of Idaho, Moscow, ID, USA
Sign up to receive updates directly to your inbox.