Whitepapers

Use of UAS Multispectral Imagery at Different Physiological Stages for Yield Prediction and Input Resource Optimization in Corn

Share

Share | 09/28/2020

Abstract: Changes in spatial and temporal variability in yield estimation are detectable through plant biophysical characteristics observed at different phenological development stages of corn. A multispectral red-edge sensor mounted on an Unmanned Aerial Systems (UAS) can provide spatial and temporal information with high resolution. Spectral analysis of UAS acquired spatiotemporal images can be used to develop a statistical model to predict yield based on different phenological stages. Identifying critical vegetation indices (VIs) and significant spectral information could lead to increased yield prediction accuracy. The objective of this study was to develop a yield prediction model at specific phenological stages using spectral data obtained from a corn field. The available spectral bands (red, blue, green, near infrared (NIR), and red-edge) were used to analyze 26 different VIs. The spectral information was collected from a cornfield at Mississippi State University using a MicaSense multispectral red-edge sensor, mounted on a UAS. In this research, a new empirical method used to reduce the effects of bare soil pixels in acquired images was introduced. The experimental design was a randomized complete block that consisted of 16 blocks with 12 rows of corn planted in each block. Four treatments of nitrogen (N) including 0, 90, 180, and 270 kg/ha were applied randomly. Random forest was utilized as a feature selection method to choose the best combination of variables for different stages. Multiple linear regression and gradient boosting decision trees were used to develop yield prediction models for each specific phenological stage by utilizing the most effective variables at each stage. At the V3 (3 leaves with visible leaf collar) and V4-5 (4-5 leaves with visible leaf collar) stages, the Optimized Soil Adjusted Vegetation Index (OSAVI) and Simplified Canopy Chlorophyll Content Index (SCCCI) were the single dominant variables in the yield predicting models, respectively. A combination of the Green Atmospherically Resistant Index (GARI), Normalized Difference Red-Edge (NDRE), and green Normalized Difference Vegetation Index (GNDVI) at V6-7, SCCCI, and Soil-Adjusted Vegetation Index (SAVI) at V10,11, and SCCCI, Green Leaf Index (GLI), and Visible Atmospherically Resistant Index (VARIgreen) at tasseling stage (VT) were the best indices for predicting grain yield of corn. The prediction models at V10 and VT had the greatest accuracy with a coefficient of determination of 0.90 and 0.93, respectively. Moreover, the SCCCI as a combined index seemed to be the most proper index for predicting yield at most of the phenological stages. As corn development progressed, the models predicted final grain yield more accurately.

Read the paper.

Authors: Razieh Barzin, Rohit Pathak, Hossein Lot?, Jac Varco and Ganesh C. Bora.

Associations: Department of Agricultural and Biological Engineering, Mississippi State University, Starkville, MS 39762, USA. Department of Geosciences, Mississippi State University, Starkville, MS 39762, USA. Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39762, USA.

Newsletter sign up

Sign up to receive updates directly to your inbox.